

Tune/Chromaticity/Coupling Results in Light of LHC Requirements

Peter Cameron

- Tune Can we meet the spec?
- Chrom Can we meet the spec?
- Coupling Is the spec adequate to our needs?
- Emittance Growth Can we meet the spec?
- 60Hz Can a solution be found?
- Damper Can we live underneath it?
- Orbit Feedback Can we live on top of it?

Commissioning - Summary of Requirements

- First Beam
 - Individual pilot bunches of $\sim 5 \times 10^9$ ppb
 - Q and Q' constraints relaxed
- First Physics Run (end of commissioning)
 - 43 on 43 bunches of $3-4\times10^{10}$ ppb

Commissioning (first physics)	Drift Rate (snap-back) (Unit per sec for ~30sec)		Tolerance	Requested Accuracy	Correction Rate (Hz)
	Max	80% Pred	Inj / ramp	土	80% Pred
Orbit (mm)					<1
Tune (´10-³)	2.8	0.6	~10	3	0.1
Chromaticity (Qx)	3.8	0.8	5	2.5	0.3

Skew Modulation

Normal Operation - Summary of Requirements

Normal Operation	Drift Rate (snap-back) (Unit per sec for ~30sec)		Tolerance	Requested Accuracy	Correction Rate (Hz)
	Max	80% Pred	Inj / ramp		80% Pred
Orbit (mm)					<1
Tune (´10 ⁻³)	2.8	0.6	3	0.75	0.3
Chromaticity (Qx)	3.8	0.8	1	0.5	1

- Tolerance on Chromaticity reduced by a factor of 5
- Requested accuracy better than 1 unit
- Correction rate of 1Hz required during snap-back
 - Implies a measurement rate >1Hz

Tune Conclusion

- We can meet the spec
- Attention must be given to feedforward, to minimize required correction strength in succesive ramps
- Interface between correction strength buffer from latest ramp to ramp manager for next ramp must be in place - this is a CERN responsibility

- Tune Can we meet the spec?
- Chrom Can we meet the spec?
- Coupling Is the spec adequate to our needs?
- Emittance Growth Can we meet the spec?
- 60Hz Can a solution be found?
- Damper Can we live underneath it?
- Orbit Feedback Can we live on top of it?

Commissioning - Summary of Requirements

- First Beam
 - Individual pilot bunches of $\sim 5 \times 10^9$ ppb
 - Q and Q' constraints relaxed
- First Physics Run (end of commissioning)
 - 43 on 43 bunches of $3-4\times10^{10}$ ppb

Commissioning (first physics)	Drift Rate (snap-back) (Unit per sec for ~30sec)		Tolerance	Requested Accuracy	Correction Rate (Hz)
	Max	80% Pred	Inj / ramp	土	80% Pred
Orbit (mm)					<1
Tune (´10-³)	2.8	0.6	~10	3	0.1
Chromaticity (Qx)	3.8	0.8	5	2.5	0.3

Chromaticity Effect on PLL

- Conclusion from chromaticity study (and years of experience with beam) is that 245MHz PLL tune measurement comfortably copes with a large range of chromaticity (resonantly excites low δp subset of momentum distribution)
- Chromaticity control is not an issue for 245MHz PLL tune measurement and tune/chrom feedback further study required for baseband system, but we expect similar behavior
- Chromaticity control is an issue primarily in the usual operational sense line broadening and resonance overlap

Window Event

Window Event

Chrom Refinement

- Measurement 'runaway' scenario
 - significant PLL phase error during chrom measurement
 - chrom correction too small
 - tune mod due to chrom larger than previous measurement, phase error larger, chrom error larger
 - repeat
- The fix
 - use more than depth of tune modulation in chrom correction
 - include PLL phase error in chrom correction

non-linear Chrom?

Normal Operation - Summary of Requirements

Normal Operation	Drift Rate (snap-back) (Unit per sec for ~30sec)		Tolerance	Requested Accuracy	Correction Rate (Hz)
	Max	80% Pred	Inj / ramp		80% Pred
Orbit (mm)					<1
Tune (´10 ⁻³)	2.8	0.6	3	0.75	0.3
Chromaticity (Qx)	3.8	0.8	1	0.5	1

- Tolerance on Chromaticity reduced by a factor of 5
- Requested accuracy better than 1 unit
- Correction rate of 1Hz required during snap-back
 - Implies a measurement rate >1Hz

Chrom Conclusion

- Chrom spec is actually a spec on ability of tune measurement to track modulation due to chrom, in the presence of other sources of tune modulation (preference is to not have modulation for coupling measurement)
- Baseband sensitivity to chrom may be stronger than what we see in 245MHz system full momentum distribution is excited
- Inclusion of phase error in chrom correction is essential, will be tested at RHIC asap
- Examine effect of non-lin chrom
- Preliminary indication is that we can meet the spec

- Tune Can we meet the spec?
- Chrom Can we meet the spec?
- Coupling Is the spec adequate to our needs?
- Emittance Growth Can we meet the spec?
- 60Hz Can a solution be found?
- Damper Can we live underneath it?
- Orbit Feedback Can we live on top of it?

The Coupling Spec

• Does it adequately address the needs of Tune Feedback?

Coupling Conclusion

- Coupling correction is essential for tune feedback
- Sufficient attention has not yet been given to this problem
- Coupling must be measured on the ramp
 - best method is to measure eigenmode projections?
- Coupling feedforward is essential, at least until it is under control.
 - Does this require additional PLL receivers?
- Interface between eigenmode buffer from latest ramp to ramp manager for next ramp must be in place - this is a CERN responsibility
- Possibility of coupling feedback merits investigation?

- Tune Can we meet the spec?
- Chrom Can we meet the spec?
- Coupling Is the spec adequate to our needs?
- Emittance Growth Can we meet the spec?
- 60Hz Can a solution be found?
- Damper Can we live underneath it?
- Orbit Feedback Can we live on top of it?

The Emittance Spec

- some fraction of 2% during physics running
- considerably more than that during commissioning and machine development

Difficult to draw accurate conclusions (many parameters), but consensus is

- At 100mW kicker power PLL makes measureable contribution to emittance growth
- At 10-20mW it's hard to see any difference
- Preliminary data from FNAL leads to similar conclusion
- 245MHz system is on the edge in this regard, but only due to dynamic range problem
- presently don't anticipate difficulty here

- Tune Can we meet the spec?
- Chrom Can we meet the spec?
- Coupling Is the spec adequate to our needs?
- Emittance Growth Can we meet the spec?
- 60Hz Can a solution be found?
- Damper Can we live underneath it?
- Orbit Feedback Can we live on top of it?

60Hz problem

- what are limits of filtering? requires extensive investigation
- Problem is potentially much more serious at LHC more 60Hz present at 3KHz than 18KHz
- Not yet certain this is on the beam
- Source requires extensive investigation at BNL localization, possible power supply remediation
 - Beam test of 720Hz balancing
 - Beam test by varying coupling dipole bus
 - Beam test by off momentum measurement with minimized chrom quad bus
- Requires extensive investigation at CERN, to minimize the effect before it appears
- Cannot be corrected globally?

Filtering

Filter (simplest would be 60Hz averaging)

- requires lock to (fluctuating) line frequency?
 h=300 in RHIC
- Limit on PLL BW? Is this a problem?
- Blind spots? Loop gain/dither overcomes this?
- Implications for digitizer clock? From RF? tune? 60Hz?

- Tune Can we meet the spec?
- Chrom Can we meet the spec?
- Coupling Is the spec adequate to our needs?
- Emittance Growth Can we meet the spec?
- 60Hz Can a solution be found?
- Damper Can we live underneath it?
- Orbit Feedback Can we live on top of it?

The Damper

- Damper sensitivity ~ 1 micron
- PLL requires ~20dB S/N for reliable operation
- BBQ sensitivity requirement is then ~100nm
- We look OK here
- Again, requires further investigation and testing both at CERN and at BNL - machine experiments

- Tune Can we meet the spec?
- Chrom Can we meet the spec?
- Coupling Is the spec adequate to our needs?
- Emittance Growth Can we meet the spec?
- 60Hz Can a solution be found?
- Damper Can we live underneath it?
- Orbit Feedback Can we live on top of it?

Orbit Feedback

- Is the 2Hz solution to ~ 100 micron chrom modulation acceptable?
- At some level, this defeats purpose of orbit feedback. What is effect on machine protection, collimation,...?
- Requires further investigation at CERN end

Summary/Action Items

- 60Hz
- Coupling
 - better spec
 - measurement and correction method (robust possible?)
 - interface to Ramp Manager for feedforward
 - feedback?
- Chromaticity
 - include PLL phase error in feedback loop
 - magnitude and effect of non-linear chrom
- tune interface to ramp manager for feedforward
- Damper confirm BBQ resolution < 100nm
- Orbit Correction confirm 2Hz operation acceptable